Downloaded From www.rejinpaul.com

	All Division in		
Reg. No.:			

Question Paper Code: 97056

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Second Semester

Electronics and Communication Engineering

EC 6201 — ELECTRONIC DEVICES

(Regulation 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- Define diffusion current and drift current.
- 2. Consider a Si PN junction at $T=300\,\mathrm{K}$ with doping concentrations of $N_a=10^{16}\,\mathrm{cm}^{-3}$ and $N_d=10^{15}\,\mathrm{cm}^{-3}$. Assume that $n_i=1.5\times 10^{10}\,\mathrm{cm}^{-3}$. Calculate width of the space charge region in a PN junction, when a reverse bias voltage $V_R=5\,\mathrm{V}$ is applied.
- 3. Calculate the collector and emitter current levels for a BJT with $\alpha_{dc}=0.99$ and $I_B=20~\mu\,A$.
- 4. What is the major difference between a bipolar and unipolar device?
- 5. Define Pinch off voltage.
- 6. Draw the symbol for DUAL GATE MOSFET.
- 7. What are the differences between a Tunnel diode and an ordinary PN junction diode?
- 8. Mention the analog and digital applications of LDR.
- 9. Draw the two transistor equivalent circuit of an SCR.
- 10. Sketch the graph symbol for n channel and p channel MOSFET.

rejinpaul.com
Grow With Us

Downloaded From www.rejinpaul.com

PART B - (5 × 16 = 80 marks)

		11111 b (0 × 10 = 00 marks)	
11.	(a)	(i) Explain the operation of PN junction under zero voltage applied bias condition and derive the expression for built in potential barrier. (12)	
		(ii) Calculate the built in potential barrier in a PN junction. Consider a silicon PN junction at 300 K with doping densities $N_a = 1 \times 10^{18}$ cm ⁻³ and $N_d = 1 \times 10^{15}$ cm ⁻³ . Assume $n_i = 1.5 \times 10^{10}$ cm ⁻³ .	1
		Or	
	(b)	(i) Explain the basic structure of the PN junction. (8)	
		(ii) Write short notes on diode switching characteristics. (8)	
12.	(a)	Define the hybrid parameters for a basic transistor circuit in CE configuration and give its hybrid model.	
		Or	
	(b)	Write short notes on: (i) Early effect (ii) Ebers — Moll model for BJT (8)	
13.	(a)	Draw a circuit diagram for obtaining the drain and transfer characteristics for an N channel JFET.	
	(b)	Or Draw a circuit diagram of the cross section of a Enhancement MOSFET. Also discuss the Drain and transfer characteristics for EMOSFET.	
14.	(a)	Explain the V-I characteristics of Zener diode and distinguish between Avalanche and Zener Break downs.	
		Or	
	(b)	Explain the principle and operation of varactor Diode.	
15,	(a)	Give the construction details of UJT & explain its operation with the help of equivalent circuits.	
7	M.	Or	
	(b)	Write short notes on: (i) Photo transistor (ii) Opto couplers (iii) CCD (iii) CCD (iii) CCD (6)	